
Advanced Design Optimization (MANE 6963)

Independent Study:
Optimization of Temperature Profile of billet in Extrusion Process

Sagar Bhatt

Contents

1 Introduction 2
1.1 Grain Growth Using Monte-Carlo Simulations 3

2 Methodology 4
2.1 Heat Equation Solution: . 4

2.1.1 Heat Generation due to Friction . 5
2.2 Design Variables . 5
2.3 Objective Function . 6
2.4 Constraints . 6

3 Results 6

4 Conclusion 8

5 Appendix 9
5.1 Main Code . 9
5.2 Objective Function . 10
5.3 Heat Equation Solver . 11
5.4 Update Temperature . 13

List of Figures

1 Schematic of the extrusion process . 3
2 Temperature evolution due to friction . 7
3 Non-Uniform grain growth . 7
4 Uniform grain growth . 7

1

Executive Summary

Microstructures in a polycrystalline material are responsible for many of its mechan-
ical properties. In this project, the temperature profile of a cross-section of the billet
is optimized to minimize the standard deviation of the grain size. This will result in a
uniform grain growth. To implement this, Monte Carlo simulation based Grain Growth
Package was used where a frictional heat equation solver was added. A surrogate model
of initial temperature profile was created using 10 design variables and the whole system
was optimized using the fmincon solver of MATLAB. Final solution results in uniform
grain structure and a reduction in standard deviation from 2-4 to 0.9 units of length.

1. Introduction

Several critical mechanical properties such as yield, fatigue and creep depend on the grain
size and distribution of microstructures in polycrystalline material. Although the relation
between structure, properties and the processes is understood very well, the control of these
microstructure variations and properties is much more complex. Currently no method exists
to dynamically control material processing to achieve target microstructure. This project is
a step in that direction. The problem under consideration is hot extrusion of a copper billet.
The objective is to optimize the temperature field on the cross-section of the billet by mini-
mizing the standard deviation of the grain sizes. This will result in a uniform microstructure
evolution. For simplicity, 2D case is being considered at the point where copper is flowing
through the die as shown in fig. 1. At this stage of extrusion process is nearly complete.
To further simplify the model, only heat generated due to friction is being considered since
deformation has already taken place and the dynamic source of heat at this point is just
friction. Also, modeling deformation and material flow would be way beyond the scope of
this project. This model goes on to show that for problems of larger scale, similar concepts
can be applied to achieve the initial temperature field across the billet. In further sections,
the concepts are presented that have been used to model the analysis section of the problem.

2

Figure 1: Schematic of the extrusion process

Image Source: http:www.eling.rsslikeAl%20profili13 ForwardorDirectExtrusion.jpg

1.1. Grain Growth Using Monte-Carlo Simulations

One of the most widely used methods to simulate grain growth in metals is the Monte
Carlo (MC) method based on the Potts model. A simulation package was developed at the
Computational Solid Mechanics laboratory at RPI by Y.Tan et. al [4] . The methodology
goes as follows:

1. A lattice site i located at position xi, where i = 1, NL and NL is the total number of
lattice points, is selected with a Site Selection Probability(SSP) function P (xi).

2. The orientation at the selected lattice site i, denoted S0
i , is randomly switched to one of

its neighbors orientations Sni , where the neighbor is selected with uniform probability,
and the change in energy ∆E due to the switch is computed according to

∆E = J

Nn∑
j=1

[δ(S0
i , S

j
i)− δ(Sni , S

j
i)]

where Nn is the number of neighboring lattice sites considered, δ is the Kronecker
delta function, which equals one if the orientations compared are the same and zero
otherwise.

3. The final orientation is selected with a probability function P̌ (∆E, T (xi)) that depends
on the change in energy and local temperature T (xi) at lattice site i. Here, we use a
function of the form

P̌ (∆E, T (xi)) =

{
pm(T (xi)) if ∆E ≤ 0,

pm(T (xi))exp
(
− ∆E
kBTs

)
if ∆E > 0,

3

where pm is the probability of switching if the change is energetically favorable, kB is
Boltzmanns constant and Ts is the simulation temperature.

MC simulations can be scaled to physical processes by fitting experimental data. In MC
simulations, the evolution of average grain size D̄ follows:

D̄m − D̄m
0 = λmCtmc

where λ is the corresponding physical length of the lattice spacing, D̄0 is the initial grain
size, and C and m are parameters fitted from simulations.

Site Selection Probability is defined as:

P (x) =
exp

(
− Q
RT (x)

) [(
D̄0

λ

)m
+ Ctmc(x

∗)
] n

m
−1

exp
(
− Q
RT (x∗)

) [(
D̄0

λ

)m
+ Ctmc(x)

] n
m
−1

Where, n, t, R, and Q represent the grain growth exponent, time, gas constant, and activation
energy for grain boundary migration, respectively. As we can see that this probability, which
basically governs how much a particular grain will grow is a function of temperature. Hence,
in this work, a temperature field due to friction is provided to this package. More on the
temperature field solution in the next section.

2. Methodology

MATLAB’s Optimization Toolbox’s solver fmincon [1] was used to for optimization. The
main simulation package as well as majority of the analysis code was written in C++, the
simulation was run by a script in MATLAB which communicates with the package by means
of data files. MATLAB script runs the analysis and receives the grain sizes and fmincon

tweaks the design variables until the standard deviation of the grain sizes drops below a
certain value. Ideally, the minimization of standard deviation of grain size could be allowed
to go through the optimization process constrained only by the bounds on Temperature field,
but owing to smaller computational resource, a hard limit of standard deviation was set to
0.9. The specifics of the solution methodology is explained in the subsequent sub-sections.

2.1. Heat Equation Solution:

Two-dimensional heat equation for isotropic material can be written as:

∂T

∂t
= κ∇2T +

Q

ρcp

This equation can be discretized using finite difference as follows:

4

T n+1
i,j − T ni,j

∆t
= κ

(
T ni,j+1 − 2T ni,j + T ni,j−1

(∆x)2
+
T ni+1,j − 2T ni,j + T ni−1,j

(∆y)2

)
+
Qn
i,j

ρcp

Rearranging,

T n+1
i,j = T ni,j + sx

(
T ni,j+1 − 2T ni,j + T ni,j−1

)
+ sy

(
T ni+1,j − 2T ni,j + T ni−1,j

)
+
Qn
i,j

ρcp

where,

sx =
κ∆t

(∆x)2
and sy =

κ∆t

(∆y)2

Since this is an explicit scheme, the stability of this method is guaranteed only if the following
CFL condition is satisfied:

2κ∆t

min((∆x)2, (∆y)2)
≤ 1

Heat Generation due to Friction

As described by Saha [3], the heat generation by friction between the extruded part and the
die can be expressed as:

qf =
τfV

J

where V is the relative velocity between the die and the extrude and is taken as 1cm/s [3], J
is the mechanical equivalent of heat and is a constant (4186.8W.s/Kg) and τf is the frictional
stress which is given by

τf =
σ̄√
3

Where, σ̄ is the flow stress of copper. Flow stress varies with temperature but for our
purposes, it is assumed to hover around 200MPa at the temperatures under consideration.
Dynamic flow stress can of course can be modeled separately. The Q computed thus is applied
on the edges of the 2D square under consideration, hence becoming Neumann boundary
condition.

2.2. Design Variables

A surrogate model based approach was taken for this work. Entire temperature field cannot
be taken as design variables as it would make the problem unnecessarily expensive. Hence,
The temperature field was formulated as follows

T (x, y) = Tmin +
5∑

k=1

Tksin(xπ
L

)

k
+

5∑
j=1

Tjsin(yπ
H

)

j

5

where, L and H are the length and height of the cross-section respectively and Tmin is
the minimum temperature that the temperature field is allowed to have (in this case 400◦C).
Thus, design variable becomes a vector of length 10 with upper half corresponding to x-axis
and the lower half corresponding to y-axis. This a truncated sine series and 10 variables were
chosen arbitrarily so as not to increase the computational cost too much. Higher accuracy
can be achieved with more design variables.

2.3. Objective Function

As described in section 1, the objective of the project is to minimize the standard deviation
of the grain size. Hence, the objective function includes an input of the design variables, and
passes the initial temperature field to the grain growth package. It reads the final grain size
file, computes standard deviation and returns the same.

2.4. Constraints

The following constraints were considered:

� Lower Bound: The vector containing the design variables with a value of 0(i.e. no
variation in temperature field, just a constant value throughout).

� Upper Bound: The vector containing the design variables with a value of 600(i.e. the
temperature field just shy of the melting point of copper at 1085◦C).

� Additional constraint on the minimizer: Considering the computational resources
required for this problem, a constraint of 0.9 was put on standard deviation.(i.e. opti-
mization stops at this value).

3. Results

Figure 2 shows the contour plot of temperature field with no optimization. Starting from
constant temperature, the central region still has the minimum initial temperature of 400◦C
while near the boundary, the temperature has risen due the friction between the die and the
extruded part. The distance traveled by the extrude here was the thickness of the die which
again from Saha’s work was taken to be 3 mm tick[3]. Given the velocity of 1cm/s implies
that this whole process lasted 0.3s. Hence, the relatively small temperature gain.

6

Figure 2: Temperature evolution due to friction

Figure 3: Non-Uniform grain growth Figure 4: Uniform grain growth

7

Figure 3 Shows grain growth without optimization and we can see from the figure that
there is significantly more growth near the boundaries on the other hand, fig. 4 shows a uni-
form growth after optimization. Numerically, unoptimized grain growth showed a standard
deviation of 2-4 units of length(i.e. dy) along vertical lines while optimized grain growth
showed standard deviation of just under 0.9 (because of our constraint).

4. Conclusion

The final converged solution satisfies all the constraints and results in a uniform grain struc-
ture. The optimized initial temperature profile may not have been uniform. In fact, the
optimized temperature field is of no consequence to this problem , as long as the standard
deviation is minimized. As we keep adding components to the heat equation solver like ma-
terial anisotropy, deformation energy etc, the temperature profile will get more and more
unpredictable. Hence, the optimized temperature profile has not been given any weightage
in the results. The point to note is that the solution can be improved by using more design
variables and having lower tolerance on the standard deviation.

References

[1] Matlab Documentation Center. Optimization Toolbox, Constrained Optimization, fmin-
con.

[2] Jason E. Hicken. Tutorial 6 slides in Advanced Design Optimizaton (MANE6963). Rens-
selaer Polytechnic Institute, Fall 2017.

[3] Pradip K. Saha. Thermodynamics and tribology in aluminum extrusion. Wear,
218(2):179–190, 1998.

[4] Y Tan, A M Maniatty, C Zheng, and J T Wen. Monte Carlo grain growth modeling
with local temperature gradients. Modelling and Simulation in Materials Science and
Engineering, 25, 2017.

8

5. Appendix

5.1. Main Code

1 %%
2 % %
3 % Main f i l e f o r Advanced Design Optimizat ion Independent %
4 % %
5 %Study : Optimizes Temperature f i e l d in a copper b i l l e t %
6 %
7 % This w i l l keep execut ing Grain Growth package with %
8 %d i f f e r e n t temperatures u n t i l c on s t r a i n s are s a t i s f i e d %

%
9 %%

10

11

12

13

14

15 c l e a r a l l ;
16 c l c ;
17

18 nx=250; %gr id s i z e
19 L=nx ;
20 x=1:1: nx ;
21 y=x ;
22 TInit =400; %min T
23 T1=ones (10 ,1) ; %i n i t i a l guess o f des ign var
24 % T=TInit * ones (nx) ;
25

26 lb = 0*T1 ; %upper and lower bound o f des ign va r i ab l e
27 ub= 600*T1 ;
28

29 fun=@(T1) obj (T1 , TInit) ;
30 opt ions=opt imopt ions (@fmincon , ’ Algorithm ’ , ’ sqp ’ , ’ Display ’ , ’ I t e r ’ , ’

Object iveL imit ’ , 0 . 9) ;
31 [T1 , dev , f l a g , output]= fmincon (fun ,T1 , [] , [] , [] , [] , lb , ub , [] , opt i ons) ;

9

5.2. Objective Function

1 %%
2 % %
3 % Ojec t ive func t i on f o r Independent Study %
4 % %
5 % % Need :
6 % minimum temp TInit
7 % Array o f des ign Var iab l e s T1
8 % %
9 %%

10

11 f unc t i on [dev]=obj (T1 , TInit)
12 nx=250;
13 x=1:1: nx ;
14 y=x ;
15 L=5;
16 f o r i =1:nx
17 f o r j =1:nx
18 f o r k=1: s i z e (T1 , 1) /2
19 T(i , j)=TInit+T1(k) *(s i n (x (i) * pi /L)) /k+T1(k+(s i z e (T1 , 1) /2)) *(s i n (y (

j) * pi /L)) /k ;
20 end
21 end
22 end
23 f i l e=’ temp . dat ’ ; %Writing temp f i e l d to f i l e
24 dlmwrite (f i l e ,T, ’ ’) ;
25

26 % system command to execute the C++ code with abouve temp f i e l d
27

28 [s tatus , cmdout]=system (’mpirun −n 4 ./2 DfitMc/ para l le l MC . out −−nonstop 2
t r i a n . 0 0 0 . dat 480 120 0 1 100 100 ’) ;

29

30 % Array o f g ra in boundary Loacat ions
31 g=ve r t c a t (load (’ g r a i nS i z e 1 . dat ’) , load (’ g r a i nS i z e 2 . dat ’)) ;
32

33

34 %Array o f g ra in s i z e d
35 k=1;
36 f o r f =1: s i z e (g , 1)−1
37 i f (g (f +1 ,2)−g (f , 2) >0)
38 gra inS i zeArray (k)=g (f +1 ,2)−g (f , 2) ; k=k+1;
39 end
40 end
41

42 % Computing Standard dev i a t i on o f g ra in s i z e s
43 dev=std (gra inS i zeArray) ;
44

45 end

10

5.3. Heat Equation Solver

1 // So lve s the 2D heat equat ion with an e x p l i c i t f i n i t e d i f f e r e n c e scheme
2

3 #inc lude <vector>
4 #inc lude <cmath>
5

6 std : : vector<std : : vector<double> > f r i cHea t (i n t dim x , i n t dim y , std : : vector<
std : : vector<double> > &v)

7 {
8

9 // Phys i ca l parameters
10 double L = s t a t i c c a s t <double>(dim x) ;
11 double H = s t a t i c c a s t <double>(dim y) ;
12 double kappa = 401 ; // Thermal Conduct iv i ty o f Copper [W/

mK]
13 double c = 0 . 3 9 ; // S p e c i f i c heat o f Copper [kJ /(Kg K)]
14 double J = 4186 . 8 ; // Mechanical Equiva lent o f heat [W. s /Kg

or J/kg]
15 // Numerical parameters
16 i n t nx = dim x ; // # g r i dpo i n t s in x−d i r e c t i o n
17 i n t nz = dim y ; // # g r i dpo i n t s in z−d i r e c t i o n
18 i n t nt = 1 ; // Number o f t imes teps to compute
19 double dx = L / s t a t i c c a s t <double>(nx) ; // Spacing o f g r id in x−

d i r e c t i o n
20 double dz = H / s t a t i c c a s t <double>(nz) ; // Spacing o f g r id in z−

d i r e c t i o n
21

22

23 // Compute s t ab l e t imestep
24 double dt = dx * dx / (4 * kappa) ;
25 double sx , sz ;
26 // Setup i n i t i a l l i n e a r temperature p r o f i l e
27 double TInit = 460 ;
28 std : : vector<std : : vector<double> > T; // (nx , std : : vector<double>(nx , TInit))

;
29 std : : vector<std : : vector<double> > Tnew ; // (nx , std : : vector<double>(nx , 0)) ;
30 T=v ;
31 Tnew=v ;
32

33 double tau = 2e8 ; // Assumed f low s t r e s s [Pa]
34 double V = 1e−2; // v e l o c i t y o f the ram [m/ s]
35 std : : vector<std : : vector<double> > Q(nx , std : : vector<double>(nx , 0)) ;
36

37

38 f o r (i n t i = 0 ; i < nx ; ++i)
39 {
40 Q[i] [0] = tau * V / (sq r t (3) *J) ; // volumetr ic , hence avo id ing rho

throughout

11

41 Q[i] [nx−1] = tau * V / (sq r t (3) *J) ;
42 Q[0] [i] = tau * V / (sq r t (3) *J) ;
43 Q[nz−1] [i] = tau * V / (sq r t (3) *J) ;
44 }
45

46

47 // Compute new temperature
48

49 sx = kappa * dt / (dx * dx) ;
50 sz = kappa * dt / (dz * dz) ;
51 f o r (i n t j = 1 ; j < nx − 1 ; ++j)
52 {
53 f o r (i n t i = 1 ; i < nx − 1 ; ++i)
54 {
55 Tnew [i] [j] = T[i] [j] + sx * (T[i] [j + 1] − 2 * T[i] [j] + T[i] [

j − 1]) + sz * (T[i + 1] [j] − 2 * T[i] [j] + T[i − 1] [j]) + Q[i] [j] * dt / c
;

56 }
57 }
58 // Set boundary cond i t i on s
59 f o r (i n t j = 1 ; j < nx − 1 ; ++j)
60 {
61 Tnew [0] [j] = T [0] [j] + sx * (T [0] [j + 1] − 2 * T [0] [j] + T [0] [j

− 1]) + sz * (2 * T [1] [j] − 2 * T [0] [j]) + Q[0] [j] * dt / c ;
62 Tnew [nz−1] [j] = T[nz−1] [j] + sx * (T[nz−1] [j + 1] − 2 * T[nz−1] [

j] + T[nz−1] [j − 1]) + sz * (2 * T[nz − 2] [j] − 2 * T[nz−1] [j]) + Q[nz−1] [j
] * dt / c ;

63 }
64 f o r (i n t i = 1 ; i < nz − 1 ; ++i)
65 {
66 Tnew [i] [0] = T[i] [0] + sx * (2 * T[i] [1] − 2 * T[i] [0]) + sz * (T[

i + 1] [0] − 2 * T[i] [0] + T[i − 1] [0]) + Q[i] [0] * dt / c ;
67 Tnew [i] [nx−1] = T[i] [nx−1] + sx * (2 * T[i] [nx − 2] − 2 * (T[i] [nx

−1])) + sz * (T[i + 1] [nx−1] − 2 * T[i] [nx−1] + T[i − 1] [nx−1]) + Q[i] [nx
−1] * dt / c ;

68

69 }
70 Tnew [0] [0] = Tnew [0] [1] ;
71 Tnew [0] [nx−1] = Tnew [0] [nx−2] ;
72 Tnew [nz −1] [0] = Tnew [nz − 1] [0] ;
73 Tnew [nz−1] [nx−1] = Tnew [nz − 2] [nx−1] ;
74 T = Tnew ;
75 re turn Tnew ;
76 }

12

5.4. Update Temperature

1 /*
2 This Function was added to gra in growth package
3 to updae the temperature at each time step
4

5 */
6 i n t n i t e r =1;
7 template < i n t dim> void UpdateLocalTmp (MMSP: : gr id<dim , unsigned long>& grid ,

long double phys i ca l t ime , double * temp) {
8

9 vector<int> coords (dim , 0) ;
10 // std : : cout<<x1 (gr id , 0)<<std : : endl ;
11 i f (dim==2){
12 std : : vector<std : : vector<double> > tempInit (dim x , std : : vector<double>(dim y ,

0)) ;
13 f o r (i n t codx=x0 (gr id , 0) ; codx < x1 (gr id , 0) ; codx++)
14 f o r (i n t cody=x0 (gr id , 1) ; cody < x1 (gr id , 1) ; cody++){
15 coords [0] = codx ;
16 coords [1] = cody ;
17

18 i f (n i t e r >1)
19 {
20 tempInit [codx] [cody]= gr id . AccessToTmp(coords)−273;
21 }
22 e l s e i f (n i t e r==1)
23 {
24 f o r (i n t codx=x0 (gr id , 0) ; codx < x1 (gr id , 0) ; codx++)
25 f o r (i n t cody=x0 (gr id , 1) ; cody < x1 (gr id , 1) ; cody++){
26 tempInit [codx] [cody]=0;
27 }
28

29 }
30

31 }
32 n i t e r+=1;
33 tempInit= f r i cHea t (dim x , dim y , tempInit) ;
34

35 f o r (i n t codx=x0 (gr id , 0) ; codx < x1 (gr id , 0) ; codx++)
36 f o r (i n t cody=x0 (gr id , 1) ; cody < x1 (gr id , 1) ; cody++){
37 coords [0] = codx ;
38 coords [1] = cody ;
39

40 g r id . AccessToTmp(coords)=273 + tempInit [codx] [cody] ;
41

42 }
43 }

13

	1 Introduction
	1.1 Grain Growth Using Monte-Carlo Simulations

	2 Methodology
	2.1 Heat Equation Solution:
	2.1.1 Heat Generation due to Friction

	2.2 Design Variables
	2.3 Objective Function
	2.4 Constraints

	3 Results
	4 Conclusion
	5 Appendix
	5.1 Main Code
	5.2 Objective Function
	5.3 Heat Equation Solver
	5.4 Update Temperature

