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Abstract

A 2D Navier-Stokes solver was developed to simulate steady,laminar flow over a backward-facing step of height h.
The step expansion ratio=1/2 and the flow at the step was assumed to be fully developed, laminar channel flow. The
Reynolds number for this flow was defined as Re=Uh/ν. The 2D incompressible Navier-Stokes equations was solved in
generalized curvilinear coordinates using artificial compressibility method. A code was developed using MATLAB where
three-point , second order finite differencing was used to discretize the convective and viscous fluxes in conjunction with
scalar, fourth-difference, third-order artificial dissipation for stability. Dual time-stepping with a second-order backward
scheme in real time and four stage Runge-Kutta time stepping was used for pseudo time. The flow was simulated for
Reh=50, 100, 200, and 400. The streamlines were plotted in the steady-state. The results were compared with the
experimental data obtained by Armaly et al.[2] and the numerical solutions obtained by Kim and Moin[11]. The effects
of local time stepping, implicit residual smoothing and the CFL number are investigated on the rate of convergence of
the time algorithm. The effect of artificial dissipation on the accuracy and stability of the solution is also investigated.
The results are in agreement with the experimental and numerical solutions of Armaly et al. and Kim and Moin.

I. Introduction

This project is concerned with simulating a 2D laminar
flow over a backward-facing step. Although numerous in-
vestigations have been carried out on this subject, the
exact physical origins of the flow separation and vortex
formation has not been clear owing to the fact that the
analytical treatment of the flow is not available and hence
experimental and numerical investigations are involved
[3]. Fluid flow problems in channels with separation and
reattachment of boundary layer is encountered in many
real world situations such as ducts, heat exchangers etc[8].
Hence, study of such phenomenon is vitally important.
When studying such flow problems, backward-facing step
can be regarded has having one of the simplest geometries
while retaining rich flow physics manifested by flow separa-
tion, flow reattachment and multiple recirculating bubbles
in the channel depending on the Reynolds number and the
geometrical parameters such as the step height and the
channel height[8].

The study of backward-facing step flows is an impor-
tant part of fundamental fluid mechanics. Among the
numerous studies that have been undertaken on the sub-
ject, the works of Armaly et al. stands apart. They pre-
sented a detailed experimental and numerical investigation
in a backwards-facing geometry for an expansion ratio of
H/h=2, an aspect ratio W/h=36 and Reynolds numbers up
to ReD=8000. They reported multiple recirculation zones
downstream of the step. Kim and Moin[11] computed flow
over a backward-facing step using Fractional Step method,
which is second order accurate in both space and time.
They investigated the dependence of reattachment length
on Reynolds number.Their results were in good agreement
with Armaly et al. to about ReD =500. For ReD >500,

their results started to deviate from the experimental data.
This was attributed to the three dimensional nature of the
flow. The three dimensionality of the flow was investigated
by Biswas et al. for ReD ≤800.Their results were in agree-
ment with experimental results of Armaly et al.. The defi-
nition of Reynolds number used by Armaly et al. is given

by ReD =
UD

ν
, where U is two-thirds of maximum inlet

velocity, D is the hydraulic diameter of the inlet channel
which is twice its height, i.e. D=2h, and ν is the kinematic

viscocity. In our study, Re has been defined as Reh =
Uh

ν
.

Hence, the cases we are considering, Reh=50, 100, 200 and
400 correspond to ReD=100, 200, 400 and 800, respec-
tively, from Armaly et al.’s work. This relation will help us
in comparing our results to that of Armal et al. and Kim
and Moin’s results.

I. Backward Facing Step Flow

As reported numerous times in literature, backward-facing
step flows result in formation of two major recirculation
zones. The primary recirculation zone occurs right after
the step in the lower region between the step and the floor
of the cavity. The secondary recirculation zone occurs on
the upper wall of the cavity after the primary recirculation
zone has ended. One of the targets of this study is to
investigate formation of these zones and their dependence
on the Reynolds number.

The setup of the problem is shown in figure 1. The ex-
pansion ratio of h:H=1:2. The aspect ratio of the setup,
h:L=1:20 where, L=length of the channel.
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Figure 1: Setup of the problem

II. Governing Equations

An incompressible fluid with constant properties is as-
sumed. Non-dimensionalized Navier-Stokes equations in
Cartesian co-ordinates are given by:

Γ
∂Q

∂t
+
∂E1

∂x
+
∂E2

∂y
− ∂E1

v

∂x
− ∂E2

v

∂y
= 0

where,

Γ = diag(0, 1, 1) ,

Q =

Pu
v

 , E1 =

 u
uu+ P
uv

 ,

E2 =

 v
uv

vv + P

 , E1
v =

1

Re

 0
∂u ∂x
∂v ∂x

 ,

E2
v =

1

Re

 0
∂u ∂y
∂v ∂y


The numerical solution of these equations presents major
difficulties, due in part to the special role of the pressure
in the equations and in part to the large amount of com-
puter time which such solution usually requires, making
it necessary to devise finite-difference schemes which allow
efficient computation. In two-dimensional problems the
pressure can be eliminated from the equations using the
stream function and vorticity, thus avoiding one of the
difficulties[6]. Chorin developed a method called ”Method
of Artificial Compressibilty”[6] and since then has been
improved by numerous researchers for solving unsteady
Navier-Stokes equations. This method is,typically, com-
bined with dual time stepping where an iteration in dual
time is implemented for each time step in real time. This
method assures a convergence of solution for incompress-

ible unsteady problem[12]. Chorin himself implemented
the method using DuFort-Frankel scheme on a standard
grid in the 2D case of thermal convection in a fluid layer
heated from below [6]

II. Method of Solution

Firstly, the generalized coordinate transformation was
achieved for curvilinear coordinate system (x, y) → (ξ, η)
where ξ = ξ(x, y), η = η(x, y). For this purpose first
xξ, xη, yξ and yη were calculated. This was achieved by us-
ing forward differencing of x and y and taking ∆ξ,∆η = 1.
For example:

∂x

∂ξ
=
xi+1 − xi−1

∆ξ

Using these values Jacobian was calculated in the fol-
lowing manner:

G = det

[
xξ yξ
xη yη

]
= xξyη − xηyξ

Jacobian: J =
1

G

Then metrics of transformation were calculated using the
following:
ξx = Jyη, ξy = −Jxη, ηx = −Jyξ, ηy = Jxξ

Using these, metric tensor was calculated:

gij =

[
g11 g12

g12 g22

]
=

[
(ξx)2 + (ξy)2 ξxηx + ξyηy
ξxηx + ξyηy ξx)2 + (ξy)2

]

Now, covariant velocities were calculated using:
U = uξx + vξy, V = uηx + vηy

Hence now we can do a partial transformation of non-
dimensionalised Navier-Stokes equation in curvilinear co-
ordinates:

1

J
Γ
∂Q

∂t
+
∂E∗1

∂ξ
+
∂E∗2

∂η
− ∂E∗1

v

∂ξ
− ∂E∗2

v

∂η
= 0

where,

Γ = diag(0, 1, 1) ,
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E∗1 =
1

J

 U
uU + Pξx
vU + Pξy

 ,

E∗2 =
1

J

 V
uV + Pηx
vV + Pηy

 ,

E∗1
v =

1

Re

1

J



0

g11
∂u

∂ξ
+ g12

∂u

∂η

g11
∂v

∂ξ
+ g12

∂v

∂η


,

E∗2
v =

1

Re

1

J



0

g12
∂u

∂ξ
+ g22

∂u

∂η

g12
∂v

∂ξ
+ g22

∂v

∂η


The viscous and convective fluxes were then discretized
using three-point, second order accurate finite differenc-
ing. Central differencing satisfies these requirements. The
finite difference equations for this method is given by:

∂u

∂x
=
ui+1 − ui−1

2∆x

Figure 2: Stencil of three point central differencing

Using this discretization, the convective and viscous
fluxes were calculated and then right hand side of the
Navier-Stokes equations were calculated. One of the major
challenges in computing solutions to the incompressible
Navier-Stokes system of PDEs s satisfying the divergence-
free velocity condition. For this purpose, Artificial Com-
presssibility method was used. Artificial compressibility
method [6], provides a mechanism to march in pseudo-

time for each real time step to achieve divergence-free
velocity field such that mass and momentum are conserved
in the steady-state. The classical artificial compressibil-
ity method transforms the mixed elliptic/parabolic type
equations into a system of hyperbolic or parabolic equa-
tions in pseudo-time, which can be numerically integrated.
The method has been generalized to curvilinear coordi-
nates.The compressible Navier-Stokes equations are hyper-
bolic in nature i.e. they have real characteristics whereas
the incompressible flow equations are mixed parabolic-
elliptic in nature. Using method the hyperbolic nature of
the compressible Navier-Stikes equations is given to the
incom- pressible equation by adding the time derivative of
the pressure in continuity equations.The odd derivatives in
the truncation error causes dispersive effects which result
in numerical oscillations in the solution. For this purpose
artificial dissipation was introduced in the system to re-
duce ossilations in the calculated RHS.

To calculate artificial dissipation, first the Jacobian matrix
is calculated as follows:

Aj =
1

J

 0 ξjx ξjy
ξjx U j + uξjx uξjy
ξjy vξjx U j + vξjy

 ,

ξ1 = ξ, ξ2 = η , and

U1 = U ,U2 = V

Now, the spectral radius was calculated using:

ρ(Aj) =
1

J
(|U j |+

√
(U j)2 + gjj)

Now, the dissipation was calculated using the following
finite difference equations:

Diss(i,j) = δ̃ξD
1
(i,j) + δ̃ηD

2
(i,j) = (D1

(i+1/2,j) −

D1
(i−1/2,j)) + (D2

(i,j+1/2) −D
2
(i,j−1/2))

D1
(i+1/2,j) = ερ(A1)(Q(i+2,j) − 3Q(i+1,j) +

3Q(i,j) −Q(i−1,j))

Where ε is a small number which controls the dissipa-
tion. RHS with artificial dissipation was then used in time
marching inorder to calculate pressure, x-velocity and y-
velocity of the the flow field. For time marching, dual time
stepping technique was used. The Artificial compressibility
equaltions wih dual time-stepping are given by:
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∂Q

∂τ
= −Γ

∂Q

∂t
− J

(
∂E∗1

∂ξ
+
∂E∗2

∂η
− ∂E∗1

v

∂ξ
− ∂E∗2

v

∂η
+

Diss) = RHS

Discretization of real time component of dual time stepping
was discretized using second order backward differencing. The
finite difference equation for this scheme is given by:

∂Q

∂t
=

3Qn+1 − 4Qn +Qn−1

2∆t

Figure 3: Stencil of second order backward differencing

Pseudo time marching was achieved by implementing fourth
stage Runge-Kutta scheme, the finite difference equation for
which is given by:

Qk+1,1 = Qk +
1

4
∆τRHS

Qk+1,2 = Qk +
1

3
∆τRHS1

Qk+1,3 = Qk +
1

2
∆τRHS2

Qk+1 = Qk + ∆τRHS3

where, ∆τ is the local time step for the pseudo time marching.
This time step is not a constant value but varies for each grid
point. The pseudo time stepping is more efficient if the time
step varies for each grid point depending the CFL and Von-
Neumann number. The pseudo time step is given by:

∆τi,j = min

(
CFL

J ×max(ρ(A1), ρ(A2)
,

Re ∗ V N
max(g11, g22)

)
For each real time step, the solution was marched in pseudo

time until it reached solution. The program was executed for
different grid sizes, stretching ratios and time steps to verify
accuracy of the code. The results are discussed later.

The pseudo time marching does not march the solution it-
self in time but helps in reducing the residual and to get a
divergence free velocity condition. We can increase convergence
rate of this method by reducing the residuals before marching
in pseudo time. One of the methods to achieve this is the im-
plicit residual smoothing. This technique helps in reducing the
fluctuations of the residuals and to increase the size of time step
hence increasing the speed of time marching. The equation to
achieve residual smoothing is given by:

(1− εξδξξ)(1− εηδηη)
−−−→
RHS =

−−−→
RHS

where,
−−−→
RHSis the computed RHS and

−−−→
RHS is the smoothed

RHS. Direct dicretization of this equation results in a pentadi-
agonal matrix which is tedious and computationally expensive
(O(N3)). This pentadiagonal matrix is broken into two tridi-
agonal systems by the following equations:

(1− εξδξξ)
−−→
Ui,j =

−−−→
RHS

Ui,j − ε
Ui+1,j − 2Ui, j + Ui− 1, j

∆ξ2
=
−−−−−→
RHSi,j

RHSi,j − ε
RHSi,j+1 − 2RHSi,j +RHSi,j−1

∆η2
= Ui,j

The resulting tridiagonal system will be much faster and cheaper
(O(N)).

Boundary Conditions: The boundary condition for the prob-
lem are:

Walls: U=V=0;
∂P

∂n
= 0

Inlet: U=1 (Normalized, Parabolic profile) , V=0;

Exit:
∂U

∂x
= 0,

∂V

∂x
= 0

III. Grid generation

Since the problem is a 2D cavity flow, the domain is a rectan-
gle where aspect ratio=1:20.For this domain both uniform and
stretched grids were generated. For uniform grid, a constant
spacing of ∆x was chosen. Figure 4 shows a uniform grid for the
given domain. The solution was calculated for successively finer
grids for a uniform grid until grid independence was achieved.
For representation purpose, smaller grid of dimensions 61X61 is
shown here.

Figure 4: A 61X61 uniform grid

Figure 5: A 61X61 stretched grid with stretching ratio=1.1

For stretched grids, grid was made finer in the first half of
the domain where the recirculation was expected and then it
was allowed to get coarse since the flow had reached steady
value and does not change very much. To implement such a
grid, a geometric series stretching was performed on the domain

5



. Figure 5 shows one such stretched grid with stretching ratio
of 1.1 for a grid size NXN where, N=61.

IV. Results

During the computation, the norm of the difference between
the old and new values of x-velocity was monitored. The so-
lution was assumed to have converged when this norm had
reached value lower than 10−6. The computation was started
with an initial velocity profile which is presented in fig. 6. First
a grid independence study was carried out for Reh=50 (i.e
ReD=100 )for grid size ranging from 21×21 to 201×201. The
change in norm values found in this study is represented in fig.
7. From this figure we can see that the change in norm values
do not increase with any further increase in number of grid
points at N=121. Hence we can conclude that the solution has
become grid independent at N=121 for the considered domain
(i.e.2h×20h, where h is the step size). Therefore, hereafter, all
the computations have been carried out on a 121×121 grid.

Figures 8 and 9 show comparison between the fully developed
velocity profile of Armaly et al.’s result and the result obtained
during present study,respectively, for ReD=100.

Figures 10-13 show streamlines and velocity profiles for uni-
form grid for Reh=50, 100, 200 and 400; and, figures 14-17
show the streamlines and velocity profiles for stretched grid for
the same Reynolds numbers.

As we can see from the figures, the length of separation in-

creases with increase in Reynolds number. Also, at higher
Reynolds number, multiple separation zones start forming. In
literature, multiple flow separation zones have been reported
at ReD > 500. In our study, we observe this phenomenon
for Reh = 400(i.e. ReD = 800). All other Reynolds number
considered here are lower than 500, hence, we get only one
recirculation region which is located under the step.

Figure 6: Grid Independence study for ReD=100

Figure 7: Velocity profile of the inlet velocity
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Figure 8: Experimental velocity profile obtained by Armaly et al. for ReD=100

Figure 9: Velocity profile for ReD =100

I. Uniform Grid

Figure 10: Streamlines and Velocity profile for Reh =50 for a uniform grid
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Figure 11: Streamlines and Velocity profile for Reh =100 for a uniform grid

Figure 12: Streamlines and Velocity profile for Reh =200 for a uniform grid

8



Figure 13: Streamlines and Velocity profile for Reh =400 for a uniform grid

II. Stretched Grid

Figure 14: Streamlines and Velocity profile for Reh =50 for a stretched grid
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Figure 15: Streamlines and Velocity profile for Reh =100 for a stretched grid

Figure 16: Streamlines and Velocity profile for Reh =200 for a stretched grid
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Figure 17: Streamlines and Velocity profile for Reh =400 for a stretched grid

III. Comparison of computed results

Figure 18: Reattachment length as a function of Reynolds
number

In fig. 18, reattachment length is presented as a func-
tion of Reynolds number. The results are compared with
computed results obtained by Armaly et al. and Kim and

Moin. The experimental data presented by Armaly et al.
are also presented to better understand difference in com-
putational and experimental results. The computed results
obtained show a larger reattachment length compared to
those obtained by Armaly et al. but shorter than results
obtained by Kim and moin. We can also observe that the
computed results start to deviate from experimental re-
sults for ReD >400, as reported in numerous works. This
difference is not attributed to the numerical error in the so-
lution but due to the three dimensionality of the flow which
is due the formation of multiple flow separation zones for
ReD >400 as Armaly et al. have pointed out.

IV. Effect of local time stepping, implicit resid-
ual smoothing and the CFL number

Local time stepping helped in optimizing time stepping for
each node since at some nodes, the CFL number might be
different due to the fact that solution might not change
at those nodes alot. This helped in reducing the num-
ber of iterations by a significant amount. Local time step-
ping was controlled by CFL and Von Neumann number.
The CFL number was a very important factor in the cal-
culations since the pseudo time step, ∆τ , depended on
CFL number. A general observation during the calcula-
tions was that as Reynolds number increased, the CFL
number had to be reduced in order to achieve a stable so-
lution. For Reh=50 it was found that the solution was
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stable for CFL≤1, for Reh=100 : CFL≤0.5, for Reh=200
: CFL≤0.1, for Reh=400 : CFL≤0.1. Implicit residual
smoothing helped in reducing residuals and thus helps in
achieving convergence faster in pseudo time. The effect of
this phenomenon was oberved by running the calculations
with and without residual soothing for Reh=400. With
a CFL of 0.1 and Von Nuemann number of 0.1, the solu-
tion took 4.2× 105 iterations to converge without residual
smoothing and with residual smoothing, it took 5.6×104 it-
erations to converge. Hence, we can conclude that residual
smoothing had a great impact on the rate of convergence
of the solution.

V. Effect of artificial dissipation on the accuracy
and stability of the solution

Artificial dissipation reduces the ossicilations in the so-
lution which increases accuracy and helped the solution
achieve a more stable solution which was less prone to os-
silations. Aritificial dissipation however also impacts the
accuracy of the solution. In our calculations, we have taken
dissipation factor of 0.01. On changing the disipation fac-
tor to 0.1, the reattachment length was effected by 20.3%
for Reh=400.

V. Summary

A 2D Navier-Stokes solver was developed to simulate
steady, laminar flow over a backward-facing step of height
h. The step expansion ratio=1/2 and the flow at the step
was assumed to be fully developed, laminar channel flow.
The 2D incompressible Navier-Stokes equations was solved
in generalized curvilinear coordinates using artificial com-
pressibility method. A code was developed using MAT-
LAB where three-point , second order finite differencing
was used to discretize the convective and viscous fluxes in
conjunction with scalar, fourth-difference, third-order ar-
tificial dissipation for stability. Dual time-stepping with a
second-order backward scheme in real time and four stage
Runge-Kutta time stepping was used for pseudo time. A
grid independence study was carried out and it was found
that the soluton became grid independent at N=121. The
flow was then simulated for Reh=50, 100, 200, and 400.
The streamlines and velocity profiles were plotted in the
steady-state. The results were compared by comparing
reattachment length presented the experimental data ob-
tained by Armaly et al. and the numerical solutions ob-
tained by Kim and Moin.

VI. Conclusion

The solution was in good agreement with results obtained
by Armaly et al. and Kim and Moin. The reattachment
length was found to be larger than Armaly et al. and
shorter than Kim and Moin’s result for ReD > 400. It is
also worth noting that using local time stepping and resid-
ual smoothing increased convergance rate of the solution by
a significant amount. Also, using artificial dissipation helps
in reducing ossilations and provides more stable results.
However, too much dissipation in favour of a more stable
solution could lead to incorrect reatteachment lengths.
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