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1. Introduction

One of the fundamental ideas in Materials Science
is that the structure of a material is highly impor-
tant for predicting its properties, whether mechani-
cal, electronic, or otherwise. An example of this is
in the grain size of metals, which tends to follow the
Hall-Petch equation:

σy = σ0 +
ky√
d

Within this equation, σy is the yield strength of the
material, and d is the average size of a grain in the
material (by diameter). Therefore, as the grain size
decreases, the yield strength of the material will in-
crease, relative to the two constants σ0 and ky. This
relationship does not hold for very small grains (less
than 10 nm), but matches well with experimental
data for larger grains.

Therefore, to accurately predict the strength of
materials, it is very important to first be able to
predict what the grain size of the particles will be
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after a certain length of time being processed. This
is what grain growth models are designed to do.
By modeling the diffusion of atoms between grains
(using both bulk and interfacial energy terms), it is
possible to model the flow of atoms from one grain to
another, and to show how certain grains will grow,
and others will shrink until they disappear.

In following the model we use from the litera-
ture, we combine this diffusive process with a Monte
Carlo algorithm, in order to more efficiently model
this process at the cost of determinism. In the bulk
of this report, we describe the exact methods we use
to simulate this task, show our results of both out-
puts and strong scaling, and discuss the results.

2. Background and Methodology

2.1. MMSP

Our project is built around the Mesoscale Mi-
crostructure Simulation Project, or MMSP. This
project has been developed in-house by previous
members of our respective research groups, and has
found use in simulating various Materials Science
concepts, ranging from phase field problems (Cahn-
Hilliard model, dendritic growth, solidification, etc.)
to statistical grain-growth problems (e.g. In a 3-
D polycrystalline material, how many neighbors,
on average, does each grain have?). The imple-
mentation of this project is written in C++, and
may be downloaded from its Github repository (
https://github.com/mesoscale/mmsp ) freely for use
by anyone.

The primary utility of this software (that we
take advantage of for this project) is MMSPs Grid
class. This object stores an array of grid points (in
1-3 dimensions), where each point contains some
information about the material represented within
the grid. This could include the order parameter
(whether the material is a solid or a liquid at a
given point), the concentration (how much of 1 type
of element is present at that location), and/or the
orientation (in a crystalline material, what direction
the crystal is pointing). This list is not all-inclusive,
and may include many other parameters that play
a role in whatever simulation is being conducted.

In addition to holding all the relevant simulation

data within a single object, this class also includes
utilities that allow it to be used very effectively in
parallel systems. When an MMSP-based program
is run with multiple ranks, the grid will automat-
ically be divided amongst the ranks. Additionally,
MMSP implements a “ghostswap” functionality for
the Grid class, where neighboring cells across ranks
are made available, in case gradients of the pa-
rameters stored within the grid must be computed.
Because most material simulations do depend on
these gradients, parallel programs must balance the
computational load of computing the rate equations
for various Grid parameters on every grid point,
with the bandwidth required to communicate be-
tween nodes to resolve these ghost rows/columns.
Therefore, programs that utilize this feature, like
ours, are not embarrassingly parallel, despite seem-
ing so due to the convenience MMSP provides for
writing parallelized simulations.

2.2. Phase field model: Concentration

In the hybrid model, concentration evolves based on
the following rate equation:

dC

dt
= Mc(∇2 ∂E

∂C
− κc∇4C) (1)

In this equation, Mc represents the mobility of the
solute, κc determines the magnitude of the inter-
facial energy (excess energy due to the gradient of
C), and C is the concentration field, represented in
the MMSP Grid. Lastly, Ev is the bulk free energy,
which is given by the paper to be:

Ev =0.3((C − 0.25)2 + (C − 0.75)2) (2)

+ 0.5(C − 0.05)2(1− φ) + 0.5(C − 0.95)2φ
(3)

Where φ is the value of the phase (0 for α, 1 for
β). This term is added so the free energy curve is
different between phases.Using this expression, we
may evaluate the partial derivative, and simplify it
to the following equation:

∂Ev

∂C
= 2.2C − 0.65− 0.9φ (4)

The equilibrium is found where the derivative of
the energy is zero. Therefore, when φ=0, the equilib-
rium is at C = 0.2955, and when φ = 1, equilibrium
is at C = 0.7045. Therefore, we expect to see values
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of the concentration reasonably close to these values
within the bulk of the grains.

To evaluate the rate equation across the entire
grid, we first compute the laplacian of both concen-
tration, and the partial derivative of energy w.r.t.
concentration. This is done using a simple 1-2-1
stencil in both dimensions (as this is a 2-D simu-
lation). Therefore, at some grid point (i,j), these are
computed as:

∇2Ci,j =
Ci+1,j + Ci−1,j + Ci,j+1 + Ci,j−1 − 4Ci,j

∆x2

(5)

(6)

A similar expression can be arrived at for the deriva-
tive of energy with respect to concentration. The
value of ∆x is specified within the grid class, equal
to the distance between the neighboring grid points.
After computing these laplacians, they are stored
into a second auxiliary grid, which is then ghost-
swapped. This is so that the values may be reused
to compute the fourth gradient.

∇4Ci,j =
1

∆x2
(
∇2Ci+1,j (7)

+ ∇2Ci−1,j +∇2Ci,j+1 +∇2Ci,j−1 − 4∇2Ci,j

)
(8)

Finally, the value of the rate equation is com-
puted for each grid point, then multiplied by the
time-step, ∆t, to determine the change in concen-
tration after each step. So long as the time-step
satisfies the Courant condition, the simulation will
be stable in this explicit finite difference method.

2.3. Monte Carlo Potts Model : Grain
growth and Phase Change

The Potts model is a statistical mechanical model
that uses Monte Carlo method to evolve an ensemble
of particles or sites defined on a lattice. These sites

represent the microstructure of a material. Each lat-
tice site assumes a spin, qi that represents a given
membership of a grain on the microstructure. The
total energy of the system is given by the sum of the
bulk energy, Ev, at each site and the neighboring
lattice sites. The total energy is given by:

Ep =

N∑
i=1

Ev(qi) +

n∑
i=j

J(qi, qj)


where N is the total number of lattice sites and

n is the neighboring lattice site of the given ste. J
is defined by:

J =

{
1 for qi 6= qj

0 for qi = qj
(9)

In serial, the Potts model algorithm is as below:

� Q possible grain IDs

� Randomly choose a site i.

� Randomly choose a new grain ID at site i.

� Compute the change in total system energy
∆E

� The probability of accepting the new orienta-
tion one is given by Metropolis transition func-
tion (eq 10)

� One Monte Carlo Step (MCS) is defined as N
resetting grain ID attempts.

The probability of accepting the reorientation is
given by:

p(∆x) =

{
1 it ∆E ≤ 0

exp(−∆E/kT ) if ∆E > 0
(10)
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(a) Initial Microstructure (b) 10 MCS

(c) 100 MCS (d) 1000 MCS

(e) 10000 MCS (f) 20000 MCS

Figure 1: Evolution of grain structure over 20000 Monte Carlo steps (MCS)
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(a) Initial phase distibution (b) 10 MCS

(c) 100 MCS (d) 1000 MCS

(e) 10000 MCS (f) 20000 MCS

Figure 2: Phase Change over 20000 MCS, α is denoted by blue and β is denoted by red
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2.4. Hybrid Model

As the team consists of two individuals with dif-
fering simulation experiences (Phase field for Scott,
Monte Carlo for Sagar), the team will tackle a hy-
brid model from the literature that combines these
two methodologies. Because of this, each member
may work on the component of the model that is
more closely related to their own research, allowing
for a more efficient division of labor, where the ex-
periences gained through this project may be more
adequately applied to each member’s research in the
future.
This model is derived from the research pa-
per “Hybrid Potts-phase field model for coupled
microstructural-compositional evolution” by Eric
Homer et al. [1] Within the model, the primary pa-
rameters of interest are concentration (which atoms
are where), phase (whether the material is the “α”
solid, or the “β” solid, and Grain ID (which original
grain does a given grid point belong to). Therefore,
the MMSP grid we use for this model will contain
the value for these three parameters at every grid
location.

Our methodology for implementing this model
is to create an arbitrary initial grid, using Voronoi
tessellation to split the grid into many grains, then
simulating the evolution of the three parameters
over time. The evolution of the phase and Grain ID
will be discrete, using Monte Carlo method, while
the concentration will continuously evolve between
0 and 1, using the phase field model.

The concentration derived at each lattice site us-
ing the phase-field model is used to compute the
overall free energy which is use in Monte Carlo model
to define the probability of accepting the change in
phase and grain membership.

3. Results and Discussion

For the project, the goal was to simulate a 2-D grid,
containing 1000x1000 points. This grid will be sim-
ulated at a varying number of time steps, to observe
the changes in the various fields over time. Also, for

the strong scaling test of the Blue Gene, the simu-
lation will be for a constant 1000 time steps, with
varying numbers of nodes/ranks. In total, the sim-
ulation was run for 1 to 128 nodes in powers of two
(due to resource restrictions on ‘small’ partition of
BG/Q, we were unable to evaluate the performance
metrics on 64 nodes), with 64 ranks per node.

As can be seen in fig. 2, the size of the grains
increase as the simulation progresses. Furthermore,
the nature of this increase roughly follows the typical
grain growth behavior: when the average grain size
is small, grains grow quickly, but when the grains
are large, this growth is greatly slowed. There is
quite a large change in the average grain size be-
tween 0 and 10000 time steps, but ultimately very
little change between 10000 and 20000.

The behavior of the grains can be roughly seen
in the images for the change of the phase (fig. 2)
over the simulation window. As each grain has a
unique phase associated with it, as the grains grow,
the regions of one continuous phase will also increase
in a similar manner.

As MMSP get run with more and more ranks,
the performance increases roughly linearly, as can be
expected due to it being coded for high paralleliza-
tion. However, as the number of ranks increases, the
number of ghost rows similarly increases. Therefore,
despite having to compute fewer grid points every
step, the computer must shuffle more data between
ranks to swap the ghost rows after each iteration.
Therefore, the “normalized” performance decrease
can be explained as seen in the performance graphs.

The performance metrics we have evaluated here
include the time taken for simulation on the same
initial grid size, the speedup and strong Scaling effi-
ciency , given by:

η =
p1 × T1
pn × Tn

Where, pi and Ti denotes number of processes
and time taken respectively. The result of the strong
scaling experiments are given in table 1.
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Table 1: Performance metrics for strong scaling experiments of the Hybrid model

Number of MPI Ranks Time Taken(s) Speed Up Strong Scaling Efficiency (%)
64 1055.104 1.0000 100
128 541.910 1.9470 97.35
256 276.632 3.8141 95.35
512 135.412 7.7918 97.39
1024 68.190 15.4729 96.71
2048 39.639 26.6175 83.18
8192 11.423 92.3612 72.16
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Figure 3: Time taken for simulation over a 1000 ×
1000 grid
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Figure 4: Speed up
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Figure 5: Strong Scaling efficiency

NOTE: The final code along with this

report and README can be found on Sagar’s

kratos home folder:

PPCbhatts8/ForExaminer FinalCode/
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